Roger Access Control System

Instrukcja obsługi ekspandera MCX102-BRD

Wersja produktu: 1.0 Oprogramowanie firmowe: 1.1.0.302 lub nowsze Wersja dokumentu: Rev. B

CE

roger

1. BUDOWA I PRZEZNACZENIE

MCX102-BRD to ekspander linii wejściowych i wyjściowych przeznaczony do wykorzystania w systemie RACS 5. Ekspander współpracuje z 2 terminalami serii PRT lub 1 terminalem z interfejsem Wiegand. Urządzenie po podłączeniu do kontrolera dostępu MC16 oraz terminali umożliwia obsługę 1 przejścia.

Charakterystyka

- Ekspander linii WE/WY do systemu RACS 5
- 2 wejścia NO/NC
- 1 wyjście tranzystorowe
- 1 wyjście przekaźnikowe
- Interfejs RS485
- Interfejs Wiegand
- Interfejs RACS CLK/DTA
- Zaciski śrubowe

Zasilanie

Ekspander MCX102-BRD wymaga zasilania 12VDC. Przekroje przewodów zasilania należy tak dobrać, aby napięcie zasilania przy urządzeniu nie różniło się więcej niż o 1V względem napięcia na wyjściu zasilacza. Dobór właściwych przekrojów przewodów jest szczególnie krytyczny w sytuacji, gdy urządzenie jest zasilane ze źródła znajdującego się w znacznej odległości. Minus takiego dodatkowego zasilacza należy połączyć z minusem kontrolera (GND) przy pomocy przewodu o dowolnie małym przekroju. Zalecane jest zastosowanie zasilacza umieszczonego blisko ekspandera np. w obudowie typu ME.

Magistrala RS485

Komunikację ekspandera z kontrolerem dostępu MC16 zapewnia magistrala RS485, do której można w sumie podłączyć do 16 urządzeń systemu RACS 5, każde o indywidualnym adresie w zakresie 100-115. Magistralę tą można kształtować w sposób swobodny stosując topologie gwiazdy i drzewa a także ich kombinacje. Nie dopuszcza się jednak stosowania topologii pętli. Nie jest wymagane stosowanie rezystorów terminujących na końcach linii transmisyjnych magistrali komunikacyjnej RS485. W większości przypadków komunikacja działa bezproblemowo dla wszystkich rodzajów kabla (zwykły kabel telefoniczny, skrętka ekranowana lub nieekranowana), niemniej preferowana jest nieekranowana skrętka komputerowa (U/UTP kat. 5). Zastosowanie kabli w ekranie należy ograniczyć do instalacji narażonych na silne zakłócenia elektromagnetyczne. Standard transmisji RS485 stosowany w systemie RACS 5 gwarantuje poprawną komunikację na odległości do 1200 metrów (liczoną po kablu) i charakteryzuje się wysoką odpornością na zakłócenia.

Uwaga: Do komunikacji RS485 nie należy wykorzystywać więcej niż jednej pary przewodów w kablu UTP.

Magistrala Wiegand

Interfejs Wiegand może być wykorzystywany do komunikacji z czytnikami i terminalami innych producentów. Komunikacja Wiegand jest realizowana poprzez linie wejściowe (IN1, IN2) ekspandera i pozwala ona na obsługę 1 czytnika Wiegand przez kontroler MC16.

Magistrala RACS CLK/DTA

Ekspander umożliwia obsługę 2 czytników serii PRT z adresami ID=0 i ID=1 przez kontroler MC16.

Wskaźniki LED

Ekspandery są wyposażone we wskaźniki LED, które służą do sygnalizacji wbudowanych funkcji.

Tabela 1. Wskaźniki LED						
Wskaźnik	Kolor	Funkcja wbudowana				
STA	Czerwony/ zielony	Sygnalizacja aktualnego stanu uzbrojenia strefy alarmowej (Tryb uzbrojony/rozbrojony)				
OPN	Zielony	Sygnalizacja odblokowania drzwi				

SYS	Pomarańczowy	Różne funkcje sygnalizacyjne, w tym błędy
LINK	Zielony	Sygnalizacja przepływu danych na magistrali RS485

Linie wejściowe

Ekspander udostępnia 2 linie wejściowe IN1 i IN2 typu NO i NC. Typy wejść ustawia się w ramach konfiguracji niskopoziomowej (RogerVDM). Funkcje przypisuje się poszczególnym wejściom w ramach konfiguracji wysokopoziomowej (VISO). Istnieje możliwość przypisania jednocześnie wielu funkcji do danego wejścia.

Linie wyjściowe

Ekspander udostępnia 1 wyjście tranzystorowe OUT1 i 1 wyjście przekaźnikowe REL1 ze stykami NO/NC o obciążalności 30V/1,5A. Parametry elektryczne wyjść takie jak polaryzacja ustawia się w ramach konfiguracji niskopoziomowej (RogerVDM). Funkcje poszczególnym wyjściom przypisuje się w ramach konfiguracji wysokopoziomowej (VISO). Istnieje możliwość przypisania jednocześnie wielu funkcji do danego wyjścia z ustaleniem ich priorytetów.

2. INSTALACJA

Ekspander posiada w zestawie uchwyty do montażu na szynie DIN35. Można więc instalować ekspandery w obudowach typu ME wyposażonych w taką szynę. Alternatywnie możliwe jest też zamocowanie ekspanderów z wykorzystaniem wkrętów i otworów w płytce ekspandera. Zalecane jest, aby ekspander był zamontowany w tej samej obudowie, w której znajduje się zasilacz.

Tabela 2. Opis zacisków		
Nazwa	Opis	
+12V	Zasilanie 12VDC	
GND	Potencjał odniesienia (masa)	
IN1, IN2	Linie wejściowe	
OUT1	Tranzystorowa linia wyjściowa 15VDC/150mA	
А, В	Magistrala RS485	
CLK, DTA	Magistrala RACS CLK/DTA	
NO, COM, NC	Przekaźnik (REL1) 30V/1,5A DC/AC	

Rys. 2 Instalacja ekspandera

Wskazówki instalacyjne

- Wszelkie podłączenia elektryczne należy wykonać bez obecności napięcia.
- W przypadku gdy ekspander i kontroler zasilane są z osobnych źródeł to konieczne jest zwarcie minusa zasilania ekspandera z minusem zasilania kontrolera.

3. SCENARIUSZE PRACY

W typowym scenariuszu pracy ekspander jest wykorzystywany do obsługi pojedynczego przejścia przez kontroler MC16. Ekspander jest przeznaczony przede wszystkim do obsługi czytników serii PRT. W przypadku czytników z interfejsem Wiegand tylko jedno urządzenie może być podłączone do kontrolera więc możliwa jest wtedy jedynie obsługa przejścia jednostronnie kontrolowanego.

Rys. 3 Scenariusz pracy z ekspanderami MCX102-BRD

Uwaga: Obudowa ME-2-D pod względem dostępnego miejsca oraz wydajności zasilacza umożliwia zainstalowanie nawet 3 ekspanderów MCX102-BRD odpowiadających w takim układzie za obsługę 3 przejść.

Rys. 4 Typowa obsługa przejścia z czytnikami PRT

Rys. 5 Typowa obsługa przejścia z czytnikiem Wiegand

4. KONFIGURACJA URZĄDZENIA

Konfiguracja niskopoziomowa (RogerVDM)

Konfiguracja niskopoziomowa ma na celu przygotowanie urządzenia do pracy w systemie.

Procedura programowania z poziomu programu RogerVDM:

- 1. Podłącz urządzenie do interfejsu RUD-1 zgodnie z rys. 6, a interfejs RUD-1 do portu USB komputera.
- 2. Uruchom program RogerVDM i wskaż urządzenie MCX v1.x, wersję firmware, kanał komunikacyjny RS485 oraz port szeregowy pod którym zainstalował się interfejs komunikacyjny RUD-1.
- 3. Kliknij *Połącz*, program nawiąże połączenie z urządzeniem i automatycznie przejdzie do zakładki *Konfiguracja*.
- 4. Ustaw odpowiedni adres RS485 w zakresie 100-115, załącz obsługę czytników Wiegand lub PRT, ustaw typy wejść (np. NC dla IN1 zgodnie z rys. 4) oraz stosownie do indywidualnych wymagań pozostałe nastawy konfiguracyjne.
- 5. Kliknij przycisk Wyślij do urządzenia a program prześle nowe ustawienia.
- 6. Opcjonalnie zapisz ustawienia konfiguracyjne do pliku na dysku (polecenie Zapisz do pliku...).

Uwaga: Czas na połączenie się z urządzeniem w RogerVDM to 30 s. od podania zasilania. W przypadku gdy czas ten został przekroczony, tuż przed połączeniem należy wykonać reset zasilania.

Rys. 6 Sposób podłączenia ekspandera do interfejsu RUD-1

Tabela 3. Lista parametrów konfiguracji niskopoziomowej			
Opcje komunikacyjne			
Adres RS485	Parametr określa adres urządzenia na magistrali RS485. Zakres wartości: 100-115. Wartość domyślna: 100.		
Opóźnienie sygnalizacji braku komunikacji z kontrolerem [s]	Parametr określa opóźnienie, po jakim urządzenie zacznie sygnalizować brak komunikacji z kontrolerem. Wartość 0 wyłącza sygnalizację. Zakres wartości: 0-64s. Wartość domyślna: 20s.		
Ogólne			
Raportowanie pojedynczych klawiszy	Parametr załącza pojedyncze przesyłanie kodu każdego klawisza do kontrolera. Gdy opcja wyłączona to wysyłane do kontrolera są tylko pełne kody PIN. Zakres wartości: Tak, Nie. Wartość domyślna: Tak.		
Minimalna ilość cyfr w kodzie PIN	Parametr określa minimalną ilość cyfr w kodzie PIN. Wartość 0 wyłącza obsługę PIN-ów. Zakres wartości: 0-8. Wartość domyślna: 4.		
Maksymalna ilość cyfr w kodzie PIN	Parametr określa maksymalną ilość cyfr w kodzie PIN. Wartość 0 wyłącza obsługę PIN-ów. Zakres wartości: 0-8. Wartość domyślna: 8.		
Klawisz [*] kasuje wprowadzone cyfry kodu PIN	Parametr określa czy możliwe jest kasowanie już wprowadzonych cyfr kodu PIN za pomocą klawisza [*]. Zakres wartości: Tak, Nie. Wartość domyślna: Tak		
Maksymalny czas pomiędzy cyframi kodu PIN [s]	Parametr określa maksymalny czas pomiędzy kolejnymi cyframi PIN. Przekroczenie tego czasu powoduje samoczynne skasowanie wcześniej wprowadzonych cyfr. Zakres wartości 1-64. Wartość domyślna: 10.		
Kody PIN o zmiennej długości	Parametr umożliwia stosowanie kodów PIN o zmiennej długości. Wprowadzony kod zatwierdza się wtedy klawiszem [#]. Zakres wartości: Tak, Nie. Wartość domyślna: Tak.		
Typy wejść			
IN1, IN2	Parametr określa typ linii wejściowej. Zakres wartości: [0]: NO, [1]: NC. Wartość domyślna: [0]: NO.		

Komentarze do wejść			
IN1, IN2	Dowolny tekst, który pojawi się w programie zarządzającym VISO i ułatwi identyfikację tego obiektu.		
Polaryzacja wyjść			
REL1, IO1	Parametr określa rodzaj polaryzacji linii wyjściowej. Polaryzacja normalna oznacza, że linie wyjściowa w stanie domyślnym jes wyłączona a polaryzacja odwrócona oznacza, że w stanie domyślnym linia wyjściowa jest załączona. Zakres wartości: [0]: Polaryzacja normalna, [1]: Polaryzacja odwrócona. Wartość domyślna: [0] Polaryzacja normalna.		
Komentarze do wyjść			
REL1, IO1	Dowolny tekst, który pojawi się w programie zarządzającym VISO i ułatwi identyfikację tego obiektu.		
Komentarze do obiektów			
DEV	Dowolny tekst, który pojawi się w programie zarządzającym VISO i ułatwi identyfikację tego urządzenia.		
Terminal RACS CLK/DTA ID0 / Te	erminal RACS CLK/DTA ID1		
Obsługa czytnika	Parametr umożliwia załączenie i wyłączenie obsługi czytnika terminala ID0/ID1		
Obsługa klawiatury	Parametr umożliwia załączenie i wyłączenie obsługi klawiatury terminala ID0/ID1		
Typ nośnika	Parametr określa typ nośnika zwracanego przez terminal ID0/ID1. Wartość domyślna: [16]: Numer 40bit.		
Klasa nośnika	Parametr określa klasę nośnik zwracanego przez terminal ID0/ID1 Wartość domyślna: [0002]: EM.		
Komentarz do obiektu KBD, CDI, BUZZER, LED SYSTEM, LED OPEN, LED STATUS	Dowolny tekst, który pojawi się w programie zarządzającym VISO i ułatwi identyfikację tego obiektu.		
Terminal Wiegand 1			
Obsługa terminala	Parametr umożliwia załączenie obsługi terminala Wiegand podłączanego do linii wejściowych IN1/IN2. Zakres wartości: Tak, Nie. Wartość domyślna: Tak.		
Obsługa klawiatury	Parametr umożliwia załączenie obsługi klawiatury terminala Wiegand podłączanego do linii wejściowych IN1/IN2. Zakres wartości: Tak, Nie. Domyślna wartość: Tak.		
Typ nośnika	Parametr określa typ nośnika zwracanego przez terminal Wiegand. Wartość domyślna: [16]: Numer 40bit.		
Klasa nośnika	Parametr określa klasę nośnika zwracanego przez terminal Wiegand. Wartość domyślna: [0002]: EM.		
Komentarz do obiektu KBD, CDI	Dowolny tekst, który pojawi się w programie zarządzającym VISO i ułatwi identyfikację tego obiektu.		
Liczba bitów w numerze karty	Parametr określa typ interfejsu Wiegand poprzez wskazanie liczby bitów. Zakres wartości: 0-66. Wartość domyślna: 26		
Odwrotna kolejność bitów w numerze karty	Parametr umożliwia transmisję bitów numeru karty w odwrotnej kolejności (tzw. Reverse bit order). Zakres wartości: Tak, Nie. Wartość domyślna: Nie.		
Format transmisji kodu PIN	Parametr określa format transmisji kodu PIN do kontrolera. Zakres wartości: [0]: Brak, [1]: BIN, [2]: BCD, [3]: HEX. Wartość domyślna: [0]:		

	Brak.	
Liczba bitów w kodzie PIN	Parametr określa spodziewaną długość ciągu znaków dla kodu PIN. Zakres wartości: 0 - bez sprawdzania, 1-15 – sprawdzanie wyłączone, 16-66 – sprawdzanie załączone. Wartość domyślna: 0.	
Odwrotna kolejność bitów w kodzie PIN	Parametr umożliwia transmisję bitów kodu PIN w odwrotnej kolejności (tzw. Reverse bit order). Zakres wartości: Tak, Nie. Wartość domyślna: Nie.	
Raportowanie pojedynczych klawiszy	Parametr umożliwia osobne przesyłanie każdego naciśniętego klawisza do kontrolera. Zakres wartości: Tak, Nie. Wartość domyślna: Nie.	

Manualna zmiana adresu

Adres RS485 ekspandera ustawiany za pomocą programu RogerVDM to adres programowy. Alternatywnie adres RS485 można ustawić za pomocą zworek i jest to wtedy adres sprzętowy, który ma wyższy priorytet niż adres programowy.

Uwaga: Każdorazowo po zmianie adresu sprzętowego należy dokonać restartu urządzenia.

Rys. 7 Manualne ustawienie adresu ekspandera

Procedura resetu pamięci

Procedura resetu pamięci kasuje wszystkie dotychczasowe nastawy konfiguracyjne i przywraca ustawienia fabryczne urządzenia w tym adres programowy ID=100.

Procedura resetu pamięci ekspandera:

- 1. Usuń wszystkie połączenia z linii A, B, CLK i DTA.
- 2. Załóż zworkę na styki 64 i wykonaj restart urządzenia (wyłącz/włącz zasilanie lub wciśnij na chwilę przycisk RST).
- 3. Gdy zaświecą się wskaźniki LED STAT (czerwony), LED OPN i LED SYS zdejmij zworkę ze styków 64.
- 4. Po zdjęciu zworki wskaźniki LED OPN i LED SYS zgasną, urządzenie wykona automatycznie restart i wznowi pracę z ustawieniami fabrycznymi.

Konfiguracja wysokopoziomowa (VISO)

Konfiguracja wysokopoziomowa definiuje logikę działania ekspandera współpracującego z kontrolerem MC16 i zależy od przyjętego scenariusza pracy. Konfigurację przykładowego systemu kontroli dostępu opisano w nocie aplikacyjnej AN006 dostępnej na stronie <u>www.roger.pl</u>.

5. AKTUALIZACJA OPROGRAMOWANIA

W celu aktualizacji oprogramowania firmowego urządzenie należy podłączyć do komputera za pośrednictwem interfejsu RUD-1 i uruchomić program narzędziowy RogerVDM. Plik z aktualnym oprogramowaniem wbudowanym (firmware) dostępny jest na stronie <u>www.roger.pl</u>.

Procedura aktualizacji oprogramowania ekspandera:

- 1. Podłącz urządzenie do interfejsu RUD-1 zgodnie z rys. 6, a interfejs RUD-1 do portu USB komputera.
- 2. Załóż zworkę na styki FDM.
- 3. Wykonaj restart urządzenia (wyłącz/włącz zasilanie lub wciśnij na chwilę przycisk RST).
- 4. Uruchom program RogerISP.
- 5. Wybierz port szeregowy pod którym zainstalował się interfejs komunikacyjny RUD-1 oraz zaznacz *Programowanie przez RS485*.
- 6. Wskaż ścieżkę dostępu do pliku firmware (*.hex), kliknij *Programuj* i postępuj zgodnie z komunikatami na ekranie.
- 7. Zdejmij zworkę ze styków FDM i wykonaj restart.
- 8. Przeprowadź procedurę Resetu Pamięci.

6. DANE TECHNICZNE

Tabela 4. Dane techniczne				
Napięcie zasilania	Nominalne 12VDC, dopuszczalne 10-15VDC			
Pobór prądu (średni)	40mA (bez załączonego przekaźnika)			
Wejścia	Dwie (IN1, IN2) linie wejściowe typu NO/NC, próg przełączania ok. 3.5V			
Wyjście przekaźnikowe	Jedno (REL1) wyjście przekaźnikowe z izolowanym stykiem NO/NC, maks. obciążenia 30VDC/1,5A			
Wyjście tranzystorowe	Jedno wyjście tranzystorowe (OUT1), maks. obciążenie 15VDC/150mA			
Odległości	Do 1200 m długości magistrali RS485 pomiędzy kontrolerem a ekspanderem			
	Do 150 m pomiędzy ekspanderem a terminalami PRT lub Wiegand			
Stopień ochrony	IP20			
Klasa środowiskowa (wg EN 50133-1)	Klasa I, warunki wewnętrzne, temperatura otoczenia: +5°C do +40°C, wilgotność względna: 10 do 95% (bez kondensacji)			
Wymiary W x S x G	80 x 54 x 20 mm			
Waga	50g			
Certyfikaty	CE			

7. OZNACZENIA HANDLOWE

Tabela 5. Oznaczenia handlowe				
MCX102-BRD	Ekspander 1 przejścia; 2 wejścia; 1 wyjście tranzystorowe; 1 wyjście przekaźnikowe; obsługa 2 czytników serii PRT (interfejs RACS CLK/DTA) lub Wieganda 2466 bit			
ME-2-D	Obudowa metalowa; trzy szyny DIN; dozorowany zasilacz buforowy 3,5 A/13,8 VDC; dystrybutor zasilania; przestrzeń na akumulator 12 V/17 Ah; tamper; wym.:403x326x130 mm			

RUD-1	Przenośny	interfejs	komunikacyjny	USB-RS485	oraz	programator	urządzeń
	kontroli dos	tępu firmy	ROGER				-

8. HISTORIA PRODUKTU

Tabela 6. Historia produktu			
Wersja	Data	Opis	
MCX102-BRD v1.0	10/2017	Pierwsza komercyjna wersja produktu	

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji obsługi produktu.

> Kontakt: Roger sp. z o.o. sp.k. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132 Faks: +48 55 272 0133 Pomoc tech.: +48 55 267 0126 Pomoc tech. (GSM): +48 664 294 087 E-mail: pomoc.techniczna@roger.pl Web: www.roger.pl